Amazon Mechanical Turk is a marketplace for work. We give businesses and developers access to an on-demand, scalable workforce. Workers select from thousands of tasks and work whenever it’s convenient.

76,187 HITs available. View them now.

Make Money by working on HITs

HITs - Human Intelligence Tasks - are individual tasks that you work on. Find HITs now.

As a Mechanical Turk Worker you:
- Can work from home
- Choose your own work hours
- Get paid for doing good work

Find an interesting task Work Earn money

Find HITs Now

or learn more about being a Worker

Get Results from Mechanical Turk Workers

Ask workers to complete HITs - Human Intelligence Tasks - and get results using Mechanical Turk. Register Now

As a Mechanical Turk Requester you:
- Have access to a global, on-demand, 24x7 workforce
- Get thousands of HITs completed in minutes
- Pay only when you’re satisfied with the results

Fund your account Load your tasks Get results

Get Started

amazon mechanical turk pay people for completing microtasks (2005)
anyone knows what’s a HIT?

Human Intelligence Task
Find the website for the given real estate office

<table>
<thead>
<tr>
<th>Requester:</th>
<th>Kristin Howe</th>
<th>Hit Expiration Date:</th>
<th>May 23, 2013 (1 week 5 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Allotted:</td>
<td>5 minutes</td>
<td>HITs Available:</td>
<td>17639</td>
</tr>
</tbody>
</table>

Description: Given the office name and location provided below, find the website of the real estate office.

Keywords: data, collection, websites, real, estate

Qualifications Required:
- Total approved HITs is greater than 500
- HIT approval rate (%) is not less than 95

often for micro-pay
Mechanical Turk:

- Large pool of workers (turkers)
- Sitting at home eager to work and make money
- You post a request e.g., “find spelling mistakes”
- Specify payment
- Wait until someone picks it up and submits an answer
for what tasks would you use mechanical turk (humans) vs. an algorithm?

<30 sec brainstorming>
for what tasks would you use mechanical turk (humans) vs. an algorithm?

• problems computers cannot yet solve
• image classification & labeling
• transcription from audio
• translation
• content generation for websites
• rating of things human’s will perceive (e.g. rate logos)
2010 VizWiz: using mechanical turk to help blind users
From May 31st, 2011 to May 31st, 2012, 5,329 users asked 40,748 questions
How much is this?

Question Type: Identification – Currency

Primary Subject: Object - Miscellaneous Objects

Urgency: Within a few minutes (the question asked must be answered in 1 to 10 minutes)

Subjectivity/Objectivity: Very Objective: The question is asking for only observations or facts

Photograph Quality: 5 out of 5
“What does this say?”

Temple Independent School District
Freeman Heights Administration Offices
Special Programs
300 S. 27th Street
Temple, TX 76504

Question Type:
Reading - Mail

Primary Subject:
Object - Paper

Urgency:
Within an hour (the question asked must be answered in 10 minutes to 1 hour)

Subjectivity/Objectivity:
Very Objective: The question is asking for only observations or facts

Photograph Quality:
5 out of 5
Photograph taken during users’ first week using VizWiz

Photograph taken by same user during most recent week using VizWiz (7 months later)
ABSTRACT
The lack of access to visual information like text labels, icons, and colors can cause frustration and decrease independence for blind people. Current access technology uses automatic approaches to address some problems in this space, but the technology is error-prone, limited in scope, and quite expensive. In this paper, we introduce VizWiz, a talking application for mobile phones that offers a new alternative to answering visual questions in nearly real-time—asking multiple people on the web. To support answering questions quickly, we introduce a general approach for intelligently recruiting human workers in advance called quikTurkit so that workers are available when new questions arrive. A field deployment with 11 blind participants illustrates that blind people can effectively use VizWiz to cheaply answer questions in their everyday lives, highlighting issues that automatic approaches will need to address to be useful. Finally, we illustrate the potential of using VizWiz as part of the participatory design of advanced tools by using it to build and evaluate VizWiz::LocateIt, an interactive mobile tool that helps blind people solve general visual search problems.

ACM Classification: H5.2 [Information interfaces and presentation]: User Interfaces

General terms: Human Factors, Design, Experimentation
Visual Challenges in the Everyday Lives of Blind People

Erin Brady¹, Meredith Ringel Morris², Yu Zhong¹, Samuel White¹, and Jeffrey P. Bigham¹
University of Rochester, Computer Science¹
Rochester, NY 14627 USA
{brady, zyu, jbigham}@cs.rochester.edu
samuel.white@rochester.edu

Microsoft Research²
Redmond, WA 98052 USA
merrie@microsoft.com

ABSTRACT
The challenges faced by blind people in their everyday lives are not well understood. In this paper, we report on the findings of a large-scale study of the visual questions that blind people would like to have answered. As part of this year-long study, 5,329 blind users asked 40,748 questions about photographs that they took from their iPhones using an application called VizWiz Social. We present a taxonomy of the types of questions asked, report on a number of features of the questions and accompanying photographs, and discuss how individuals changed how they used VizWiz Social over time. These results improve our understanding of the problems blind people face, and may help motivate new projects more accurately targeted to help blind people live more independently in their everyday lives.

Author Keywords
Blind Users; Q&A; Accessibility; Crowdsourcing; Mobile

ACM Classification Keywords
H.5.m Information Interfaces and Presentation: Misc.

General Terms
Human Factors; Experimentation.

INTRODUCTION
Blind people confront a number of visual challenges every day – from reading the label on a frozen dinner to figuring out how to set the oven to the correct temperature. A simple example is shopping for groceries. A blind person take a picture, speak a question they’d like to know about the picture, and then get an answer back within a minute or so from “the crowd” [5]. VizWiz Social has been released “in the wild” since May 2011, and blind users have asked over 40,000 questions since then. Today’s technology is targeted at answering some of them, e.g. “What color is this shirt?” and “What does this letter say?” But, others it cannot, for instance, “How many lines are on this pregnancy test?”, “What does the sky look like right now?”, and “Is my girlfriend hot?”

To help make sense of this diversity, we developed a taxonomy of the questions asked. By outlining the types of questions asked frequently, we hope to improve understanding of the challenges blind people face and help to motivate research into new technology to answer those questions automatically, which would be cheaper and faster. VizWiz Social also provides a rare look into the adoption of an assistive technology over the long term, and how a human-powered access technology [6] affects the user. For instance, do blind people become better photographers as they use VizWiz Social?

VizWiz Social provides insight into a specific but important subset of challenges faced by blind users, i.e., those that can be represented with a still photograph and brief audio description and that can be answered quickly but asynchronously. Other types of challenges, such as those where a user needs help in a situation requiring conveying and/or receiving continuous information, are beyond the bounds of the current technology.

massive data set
allowed to answer many follow up research questions
asking humans vs. calling functions in your code? what are the differences?

<30 sec brainstorming>
asking humans vs. calling functions in your code? what are the differences?

- **raw results noisy**
 - different workers, different effort (lazy or too eager)
 - 30% are poor quality
- **no guaranteed response time**
 - can be no response at all
- **moral implications**
 - what if blind user gets an intentionally wrong answer?
Soylent is people.
mhh...
can I really trust sb else to shorten my text?

solution:
get many people involved!
let them rate each other!
find-fix-verify pattern:

Find
“Identify at least one area that can be shortened without changing the meaning of the paragraph.”

Find overlapping areas (patches)

Fix
“Edit the highlighted section to shorten its length without changing the meaning of the paragraph.”

Soylent, a prototype...

Randomize order of suggestions

Verify
“Choose at least one rewrite that has significant style errors in it. Choose at least one rewrite that significantly changes the meaning of the sentence.”

- Soylent is, a prototype...
- Soylent is a prototypes...
- Soylent is a prototype test...

#1 find sections that need work (20% agreement)

#2 fix a single section (produce 3-5 alternatives)

#3 vote on best result – or – flag poor suggestions

iterative process to reduce noise and allow for parallelism
Soylent: A Word Processor with a Crowd Inside

Michael S. Bernstein¹, Greg Little¹, Robert C. Miller¹,
Björn Hartmann², Mark S. Ackerman³, David R. Karger¹, David Crowell¹, Katrina Panovich¹

¹ MIT CSAIL
Cambridge, MA
{msbernst, glittle, rcm,
karger, dcrowell, kp}@csail.mit.edu

² Computer Science Division
University of California, Berkeley
Berkeley, CA
bjoern@cs.berkeley.edu

³ Computer Science & Engineering
University of Michigan
Ann Arbor, MI
ackerm@umich.edu

ABSTRACT
This paper introduces architectural and interaction patterns for integrating crowdsourced human contributions directly into user interfaces. We focus on writing and editing, complex endeavors that span many levels of conceptual and pragmatic activity. Authoring tools offer help with pragmatics, but for higher-level help, writers commonly turn to other people. We thus present Soylent, a word processing interface that enables writers to call on Mechanical Turk workers to shorten, proofread, and otherwise edit parts of their documents on demand. To improve worker quality, we introduce the Find-Fix-Verify crowd programming pattern, which splits tasks into a series of generation and review stages. Evaluation studies demonstrate the feasibility of crowdsourced editing and investigate questions of reliability, cost, wait time, and work time for edits.

ACM Classification: H5.2 [Information interfaces and presentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors

Keywords: Outsourcing, Mechanical Turk, Crowdsourcing

INTRODUCTION
Word processing is a complex task that touches on many goals of human-computer interaction. It supports a deep cognitive activity—writing—and requires complicated manipulations. Writing is difficult: even experts routinely make style, grammar and spelling mistakes. Then, when a writer makes high-level decisions like changing a passage from past to present tense or fleshing out citation sketches answer ourselves [8]; masses of volunteer editors flag spam edits on Wikipedia [13]. Writing is no exception [7]: we commonly recruit friends and colleagues to help us shape and polish our writing. But we cannot always rely on them: colleagues do not want to proofread every sentence we write, cut a few lines from every paragraph in a ten-page paper, or help us format thirty ACM-style references.

As a step toward integrating this human expertise permanently into our writing tools, we present Soylent, a word processing interface that utilizes crowd contributions to aid complex writing tasks ranging from error prevention and paragraph shortening to automation of tasks like citation searches and tense changes. We hypothesize that crowd workers with a basic knowledge of written English can support both novice and expert writers. These workers perform tasks that the writer might not, such as scrupulously scanning for text to cut, or updating a list of addresses to include a zip code. They can also solve problems that artificial intelligence cannot, for example flagging writing errors that the word processor does not catch.

Soylent aids the writing process by integrating paid crowd workers from Amazon's Mechanical Turk platform¹ into Microsoft Word. Soylent is people: its core algorithms involve calls to Mechanical Turk workers (Turkers). Soylent is comprised of three main components:

1) Shortln, a text shortening service that cuts selected text down to 85% of its original length typically without changing the meaning of the text or introducing errors.
history
Mechanical Turk
= Automaton Chess Player => Hungarian: A Török
• a fake chess-playing machine in the late 18th century
• toured Europe
• took 50 years for anyone to discover the hoax
before computers were digital machines, they were actually **humans**...
Hidden Figures takes us back to a time when computers were people, women, and black

February 14, 2017 4.10am EST
world wars: maps, artillery tables…
all done by human computing (by hand… wow)
human computation
borrowed strategies from industrial assembly lines: each worker performs one operation that is highly specialized

[Ford 1913]
same as today: human computation + assembly line
human computers were eventually replaced by machinery

… but we still use them today for really hard computing tasks
having humans perform computational tasks

leveraging large crowds of people over the internet to perform a task typically performed by a single person

human computation

crowd-sourcing

crowdsourced assembly lines
(e.g. mechanical turk)
human computation/crowdsourcing

leveraging large crowds of people over the internet to perform a task typically performed by a single person

crowdsourced assembly lines

examples?

<30 sec brainstorming>
Kickstarter (crowdfunding, Kickstarter takes 5%)
crowd-science (citizen-science)

GLOBE at Night: “asks people to count the number of stars that they can see from their location” to determine global light pollution.
differences?

human computation

crowd-sourcing

replaces computers with humans

replaces human workers with members of the public
motivation of the crowd
what motivates people to contribute?

<30 sec brainstorming>
what motivates people to contribute?

#1 pay
#2 implicit work
#3 enjoyment
#4 altruism

…
#1 pay
90% of tasks pay less than $0.10

(anyone ever used mechanical turk to make money?)
Scan your card to start getting snacks!!
Communysourcing: Engaging Local Crowds to Perform Expert Work Via Physical Kiosks

Kurtis Heimerl¹, Brian Gawalt¹, Kuang Chen¹, Tapan S. Parikh², Björn Hartmann¹
University of California, Berkeley – Computer Science Division¹, School of Information²
{kheimerl,gawalt,kuangc,bjoern}@cs.berkeley.edu, parikh@ischool.berkeley.edu

ABSTRACT
Online labor markets, such as Amazon’s Mechanical Turk, have been used to crowdsourse simple, short tasks like image labeling and transcription. However, expert knowledge is often lacking in such markets, making it impossible to complete certain classes of tasks. In this work we introduce an alternative mechanism for crowdsourcing tasks that require specialized knowledge or skill: communysourcing — the use of physical kiosks to elicit work from specific populations. We investigate the potential of communysourcing by designing, implementing and evaluating Umati: the communysourcing vending machine. Umati allows users to earn credits by performing tasks using a touchscreen attached to the machine. Physical rewards (in this case, snacks) are dispensed through traditional vending mechanics. We evaluated whether communysourcing can accomplish expert work by using Umati to grade Computer Science exams. We placed Umati in a university Computer Science building, targeting students with grading tasks for snacks. Over one week, 328 unique users (302 of whom were students) completed 7771 tasks (7240 by students). 80% of users had never participated in a crowdsourcing market before. We found that Umati was able to grade exams with 2% higher accuracy (at the same price) or at 33% lower cost (at equivalent accuracy) than traditional single-expert grading. Mechanical Turk workers had no success grading the same exams. These results indicate that communysourcing can successfully elicit high-quality expert work from specific communities.

INTRODUCTION
Crowdsourcing, the division and assignment of tasks to large, distributed groups of online users, has the potential to create new jobs, improve the efficiency of labor markets, and enable a wide variety of new applications. Researchers have demonstrated compelling new systems enabled by crowdsourcing, including applications that assist the blind with visual tasks [8] and that help writers to copy-edit prose [7]. Many crowdsourcing efforts leverage microtask markets, which provide platforms for posting and finding short tasks — frequently seconds to minutes long. One of the best-known markets, Amazon Mechanical Turk (MTurk), attracts thousands of employers [15] and has had hundreds of
#2 implicit work
CAPTCHAs…
how to use this for solving real-world problems?

<30 sec brainstorming>
The New-York State Yacht Squadron, on its annual cruise to Newport, came into the harbor yesterday afternoon. The following are the names of the boats that came to anchor here: Jessie, Geraldine, Evelyn, Annie, Manning, Julia, Bonita, Magie, Wid-geon, Rambler, Fleur-de-Lis, Henrietta, Sea-Drift and Maria, with the steamer America as a tender. On anchoring, each boat fired a gun, according to custom. The reports were heard distinctly in the city, causing considerable inquiry as to "what was up," and quite a number of sanguine individuals came into our office to inquire if the guns were not annunciationary signals of the successful laying of the Atlantic Cable. We invariably replied in the negative. The squadron will leave to-day for Newport. The yachts Washington and Rambler, of this city, start with it, with parties of New-Haven people.

The Norwich line steamboat train, from New-London for Boston, this morning ran off the track seven miles north of New-London.

“Our apparatus is deployed in more than 40,000 Web sites and has transcribed over 440 million words.”
reCAPTCHA: Human-Based Character Recognition via Web Security Measures

Luis von Ahn,* Benjamin Maurer, Colin McMillen, David Abraham, Manuel Blum

CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart) are widespread security measures on the World Wide Web that prevent automated programs from abusing online services. They do so by asking humans to perform a task that computers cannot yet perform, such as deciphering distorted characters. Our research explored whether such human effort can be channeled into a useful purpose: helping to digitize old printed material by asking users to decipher scanned words from books that computerized optical character recognition failed to recognize. We showed that this method can transcribe text with a word accuracy exceeding 99%, matching the guarantee of professional human transcribers. Our apparatus is deployed in more than 40,000 Web sites and has transcribed over 440 million words.

A CAPTCHA (1, 2) is a challenge response test used on the World Wide Web to determine whether a user is a human or a computer. The acronym stands for Completely Automated Public Turing test to tell Computers and Humans Apart. A typical CAPTCHA is an image containing several distorted characters that appears at the bottom of Web registration forms. Users are asked to type the wavy characters to “prove” they are human. Current computer programs cannot read distorted text as well as humans can (3), so CAPTCHAs act as sentries against automated programs that attempt to abuse online services. Owing to their effectiveness as a security measure, CAPTCHAs are used to protect many types of Web sites, including free e-mail providers, ticket sellers, social networks, wikis, and blogs. For example, CAPTCHAs prevent ticket scalpers from using computer programs to buy large numbers of concert tickets, only to resell them at an inflated price. Sites such as Gmail and Yahoo Mail use CAPTCHAs to stop spammers from obtaining millions of free e-mail accounts, which they would use to send spam e-mail.

According to our estimates, humans around the world type more than 100 million CAPTCHAs every day (see supporting online text), in each case spending a few seconds typing the distorted characters. In aggregate, this amounts to hundreds of thousands of human hours per day. We report on an experiment that attempts to make positive use of the time spent by humans solving CAPTCHAs. Although CAPTCHAs are effective at preventing large scale abuse of online services, the mental effort each person spends solving them is otherwise wasted. This mental effort is invaluable, because deciphering CAPTCHAs requires people to perform a task that computers cannot.

We show how it is possible to use CAPTCHAs to help digitize typeset texts in nondigital form by enlisting humans to decipher the words that computers cannot recognize. Physical books and other texts written before the computer age are currently being digitized en masse (e.g., by the Google Books Project and the nonprofit Internet

*To whom correspondence should be addressed. E-mail: biglou@cs.cmu.edu
#3 enjoyment
Player 1 guesses: purse
Player 1 guesses: bag
Player 1 guesses: brown
Success! Agreement on “purse”

Player 2 guesses: handbag

Player 2 guesses: purse
Success! Agreement on “purse”

2004: games with a purpose for image labeling
2004: games with a purpose for image labeling
Labeling Images with a Computer Game

Luis von Ahn and Laura Dabbish
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA, USA
{biglou,dabbish}@cs.cmu.edu

Abstract
We introduce a new interactive system: a game that is fun and can be used to create valuable output. When people play the game they help determine the contents of images by providing meaningful labels for them. If the game is played as much as popular online games, we estimate that most images on the Web can be labeled in a few months. Having proper labels associated with each image on the Web would allow for more accurate image search, improve the accessibility of sites (by providing descriptions of images to visually impaired individuals), and help users block inappropriate images. Our system makes a significant contribution because of its valuable output and because of the way it addresses the image-labeling problem. Rather than using computer vision techniques, which don’t work well enough, we encourage people to do the work by taking advantage of their desire to be entertained.

Categories & Subject Descriptors: I.2.6 [Learning]: Knowledge acquisition. H.3.m [Information Retrieval]: miscellaneous. H.5.3 [HCl]: Web-based interaction.

General Terms: Design, Human Factors, Languages

Keywords: Distributed knowledge acquisition, image labeling, online games, World Wide Web.

INTRODUCTION
Images on the Web present a major technological challenge. There are millions of them, there are no guidelines about providing appropriate textual descriptions for them, and computer vision hasn’t yet produced a method currently available for obtaining precise image descriptions is manual labeling, which is tedious and thus extremely costly. But, what if people labeled images without realizing they were doing so? What if the experience was enjoyable? In this paper we introduce a new interactive system in the form of a game with a unique property: the people who play the game label images for us.

The labels generated by our game can be useful for a variety of applications. For accessibility purposes, visually impaired individuals surfing the Web need textual descriptions of images to be read aloud. For computer vision research, large databases of labeled images are needed as training sets for machine learning algorithms. For image search over the Web and inappropriate (e.g., pornographic) content filtering, proper labels could dramatically increase the accuracy of current systems.

We believe our system makes a significant contribution, not only because of its valuable output, but also because of the way it addresses the image-labeling problem. Rather than making use of computer vision techniques, we take advantage of people’s existing perceptual abilities and desire to be entertained.

Our goal is ambitious: to label the majority of images on the World Wide Web. If our game is deployed at a popular gaming site like Yahoo! Games and if people play it as much as other online games, we estimate that most images on the Web can be properly labeled in a matter of weeks. As we show below, 5,000 people continuously playing the
2006: games with a purpose for object localization
Peekaboom: A Game for Locating Objects in Images

Luis von Ahn, Ruoran Liu and Manuel Blum
Computer Science Department, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh PA 15213
{biglou, royliu, mblum}@cs.cmu.edu

ABSTRACT
We introduce Peekaboom, an entertaining web-based game that can help computers locate objects in images. People play the game because of its entertainment value, and as a side effect of them playing, we collect valuable image metadata, such as which pixels belong to which object in the image. The collected data could be applied towards constructing more accurate computer vision algorithms, which require massive amounts of training and testing data not currently available. Peekaboom has been played by thousands of people, some of whom have spent over 12 hours a day playing, and thus far has generated millions of data points. In addition to its purely utilitarian aspect, Peekaboom is an example of a new, emerging class of games, which not only bring people together for leisure purposes, but also exist to improve artificial intelligence. Such games appeal to a general audience, while providing answers to problems that computers cannot yet solve.

Author Keywords
Distributed knowledge acquisition, object segmentation, object recognition, computer vision, Web-based games.

ACM Classification Keywords:
I.2.6 [Learning]: Knowledge acquisition. H.5.3 [HCI]: Web-based interaction.

INTRODUCTION

training an algorithm for testing whether an image contains a dog would involve presenting it with multiple images of dogs, each annotated with the precise location of the dog in the image. After processing enough images, the algorithm learns to find dogs in arbitrary images. A major problem with this approach, however, is the lack of training data, which, obviously, must be prepared by hand. Databases for training computer vision algorithms currently have hundreds or at least a few thousand images [13] — orders of magnitude less than what is required.

In this paper we address the problem of constructing a massively large database for training computer vision algorithms. The target database will contain millions of images, all fully annotated with information about what objects are in the image, where each object is located, and how much of the image is necessary to recognize it. Our database will be similar to those previously shown to be useful for training computer vision algorithms (e.g. [13]).

To construct such a database, we follow the approach taken by the ESP Game [1] and introduce a new game called Peekaboom. Peekaboom is an extremely enjoyable networked game in which, simply by playing, people help construct a database for training computer vision algorithms. We guarantee the database’s correctness even if the people playing the game don’t intend it. As we will
vision:
‘I want to label all the images on the internet’
Translate this text

Woher hast du das?

Type in English
Duolingo: Learn a Language for Free while Helping to Translate the Web

Luis von Ahn
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213, USA
biglou@cs.cmu.edu

ABSTRACT
I want to translate the Web into every major language: every webpage, every video, and, yes, even Justin Bieber’s tweets.

With its content split up into hundreds of languages — and with over 50% of it in English — most of the Web is inaccessible to most people in the world. This problem is pressing, now more than ever, with millions of people from China, Russia, Latin America and other quickly developing regions entering the Web. In this talk, I introduce my new project, called Duolingo, which aims at breaking this language barrier, and thus making the Web truly “world wide.”

We have all seen how systems such as Google Translate are improving every day at translating the gist of things written in other languages. Unfortunately, they are not yet accurate enough for my purpose: Even when what they spit out is intelligible, it’s so badly written that I can’t read more than a few lines before getting a headache.

With Duolingo, our goal is to encourage people, like you and me, to translate the Web into their native languages.

BIO
Luis von Ahn is the A. Nico Habermann Associate Professor of Computer Science at Carnegie Mellon University. He is working to develop a new area of computer science that he calls Human Computation, which aims to build systems that combine the intelligence of humans and computers to solve large-scale problems that neither can solve alone.

An example of his work is reCAPTCHA, in which over one billion people — 15% of humanity — have helped digitize books and newspapers.

Among his many honors are a MacArthur Fellowship, a Packard Fellowship, a Sloan Research Fellowship, a Microsoft New Faculty Fellowship, the ACM Grace Hopper Award, and CMU’s Herbert A. Simon Award for Teaching Excellence and Alan J. Perlis Teaching Award.
vision:

‘I want to translate the entire Internet.’
many more examples…
e.g. Foldit: predicting protein structures
#4 altruism
Jim Gray:
• went missing while on a boat trip
• satellite took 560,000 images of the area
• poster on mechanical turk to help find his boat in the images

www.helpfindjim.com
#5 fear?
Virtual Stake Outs - Live Border Cameras

CLICK ON IMAGE OR LINK TO VIEW VIDEO

Camera 1
This is a known drug traffic area. If you see people walking along this trail carrying backpacks or packages please report this activity.

Camera 2
Look for individuals on foot carrying backpacks. If you see this activity please report it immediately.

homeland security: watching the Texas-Mexico border
concerns & limitations
privacy, sensitive data: 2013 managing email overload
privacy, sensitive data: 2013 managing email overload
EmailValet: Managing Email Overload through Private, Accountable Crowdsourcing

Nicolas Kokkalis, Thomas Köhn, Carl Pfeiffer, Dima Chornyi, Michael S. Bernstein, Scott R. Klemmer
Stanford University HCI Group
Computer Science Department, 353 Serra Mall, Stanford, CA
{nicolas, thomasko, carlp87, chornyi, msb, srk}@cs.stanford.edu

Figure 1. The EmailValet email client draws on crowdsourced expert assistants to transform a cluttered inbox into an organized task stream. Assistants are given limited, accountable access to the user’s inbox so that they may extract tasks from each email.

ABSTRACT
This paper introduces privacy and accountability techniques for crowd-powered systems. We focus on email task management: tasks are an implicit part of every inbox, but the overwhelming volume of incoming email can bury important requests. We present EmailValet, an email client that recruits remote assistants from an expert crowdsourcing marketplace. By annotating each email with its implicit

Author Keywords
Crowdsourcing; Email Overload; Human Assistants; Task Management; Access Control.

ACM Classification Keywords
K.4.3 [Organizational Impacts]: Computer-supported collaborative work.

General Terms
Design, Human Factors
issues for task workers:
ca. 40.92% is spam (2010)
Create a Twitter account and follow me

Write a positive review on Yelp

Like my YouTube video

spam examples:
fake accounts and fake clicks for better SEO
moral issues: digital sweatshops?

- unregulated sector – no labor laws
- 500,000 turkers, for 18% this is their main employment
- every mouse click is monitored
who are the turkers?
reliance on mechanical turk income
(average turker makes **below $2 per hour**)

- **United States**
 - May '09: 51% 'Mturk money is irrelevant to me.', 26% 'Mturk money is nice, but doesn't materially change my circumstances.', 9% 'Mturk money is a way for me to pay for nice extras.', 3% 'Mturk money is sometimes necessary to make basic ends meet.', 9% 'Mturk money is always necessary to make basic ends meet.'
 - Aug '09: 50% 'Mturk money is irrelevant to me.', 49% 'Mturk money is nice, but doesn't materially change my circumstances.', 5% 'Mturk money is a way for me to pay for nice extras.', 5% 'Mturk money is sometimes necessary to make basic ends meet.', 5% 'Mturk money is always necessary to make basic ends meet.'
 - Nov '09: 24% 'Mturk money is irrelevant to me.', 32% 'Mturk money is nice, but doesn't materially change my circumstances.', 16% 'Mturk money is a way for me to pay for nice extras.', 13% 'Mturk money is sometimes necessary to make basic ends meet.', 9% 'Mturk money is always necessary to make basic ends meet.'
 - Feb '10: 28% 'Mturk money is irrelevant to me.', 28% 'Mturk money is nice, but doesn't materially change my circumstances.', 9% 'Mturk money is a way for me to pay for nice extras.', 9% 'Mturk money is sometimes necessary to make basic ends meet.', 3% 'Mturk money is always necessary to make basic ends meet.'

- **India**
 - May '09: 32% 'Mturk money is irrelevant to me.', 39% 'Mturk money is nice, but doesn't materially change my circumstances.', 17% 'Mturk money is a way for me to pay for nice extras.', 10% 'Mturk money is sometimes necessary to make basic ends meet.', 6% 'Mturk money is always necessary to make basic ends meet.'
 - Aug '09: 41% 'Mturk money is irrelevant to me.', 32% 'Mturk money is nice, but doesn't materially change my circumstances.', 24% 'Mturk money is a way for me to pay for nice extras.', 16% 'Mturk money is sometimes necessary to make basic ends meet.', 10% 'Mturk money is always necessary to make basic ends meet.'
 - Nov '09: 31% 'Mturk money is irrelevant to me.', 32% 'Mturk money is nice, but doesn't materially change my circumstances.', 14% 'Mturk money is a way for me to pay for nice extras.', 13% 'Mturk money is sometimes necessary to make basic ends meet.', 6% 'Mturk money is always necessary to make basic ends meet.'
 - Feb '10: 33% 'Mturk money is irrelevant to me.', 33% 'Mturk money is nice, but doesn't materially change my circumstances.', 15% 'Mturk money is a way for me to pay for nice extras.', 16% 'Mturk money is sometimes necessary to make basic ends meet.', 6% 'Mturk money is always necessary to make basic ends meet.'
Who are the Crowdworkers? Shifting Demographics in Mechanical Turk

Joel Ross
Department of Informatics
University of California, Irvine
Irvine, CA 92697-3440 USA
jwross@uci.edu

Lilly Irani
Department of Informatics
University of California, Irvine
Irvine, CA 92697-3440 USA
lirani@ics.uci.edu

Andrew Zaidiva
Department of Informatics
University of California, Irvine
Irvine, CA 92697-3440 USA
azaidiva@uci.com

Bill Tomlinson
Department of Informatics
University of California, Irvine
Irvine, CA 92697-3440 USA
wmt@uci.edu

M. Six Silberman
Department of Informatics
University of California, Irvine
Irvine, CA 92697-3440 USA
msilberm@uci.edu

Abstract
Amazon Mechanical Turk (MTurk) is a crowdsourcing system in which tasks are distributed to a population of thousands of anonymous workers for completion. This system is increasingly popular with researchers and developers. Here we extend previous studies of the demographics and usage behaviors of MTurk workers. We describe how the worker population has changed over time, shifting from a primarily moderate-income, U.S.-based workforce towards an increasingly international group with a significant population of young, well-educated Indian workers. This change in population points to how workers may treat Turkimg as a full-time job, which they rely on to make ends meet.

Keywords
Mechanical Turk, demographics, user surveys, crowdsourcing, human computation

ACM Classification Keywords
H5.3. Group and Organization Interfaces: Computer-supported cooperative work; H5.3 Group and Organization Interfaces: Web-based interaction.

General Terms
Human factors.
conclusions
human computation::

- using human processing power to **solve problems that computers cannot yet solve**
- humans are directed by a computer
- enabled by the platform Mechanical Turk
 - a paid crowdsourcing platform for microtasks
What's the craziest thing your cat has ever done?

<table>
<thead>
<tr>
<th>Requester</th>
<th>Bjoern Hartmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIT Expiration Date</td>
<td>Jul 27 2008, 07:33 AM PDT</td>
</tr>
<tr>
<td>Reward</td>
<td>$0.08</td>
</tr>
<tr>
<td>Assignments Requested</td>
<td>30</td>
</tr>
<tr>
<td>Assignments Pending Review</td>
<td>0</td>
</tr>
<tr>
<td>Reviewed Assignments</td>
<td>30</td>
</tr>
<tr>
<td>Remaining Assignments</td>
<td>0</td>
</tr>
<tr>
<td>Remaining Time</td>
<td>Expired</td>
</tr>
</tbody>
</table>

Sketch a cat

<table>
<thead>
<tr>
<th>Requester</th>
<th>Bjoern Hartmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIT Expiration Date</td>
<td>Aug 14 2008, 08:24 AM PDT</td>
</tr>
<tr>
<td>Reward</td>
<td>$0.05</td>
</tr>
<tr>
<td>Assignments Requested</td>
<td>50</td>
</tr>
<tr>
<td>Assignments Pending Review</td>
<td>0</td>
</tr>
<tr>
<td>Reviewed Assignments</td>
<td>50</td>
</tr>
<tr>
<td>Remaining Assignments</td>
<td>0</td>
</tr>
<tr>
<td>Remaining Time</td>
<td>Expired</td>
</tr>
</tbody>
</table>
create your own crowd-sourced project some time!